首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1570篇
  免费   153篇
  国内免费   62篇
电工技术   10篇
综合类   293篇
化学工业   254篇
金属工艺   101篇
机械仪表   42篇
建筑科学   39篇
矿业工程   5篇
能源动力   112篇
轻工业   146篇
水利工程   5篇
石油天然气   8篇
武器工业   10篇
无线电   295篇
一般工业技术   187篇
冶金工业   26篇
原子能技术   5篇
自动化技术   247篇
  2024年   4篇
  2023年   102篇
  2022年   93篇
  2021年   95篇
  2020年   102篇
  2019年   84篇
  2018年   43篇
  2017年   79篇
  2016年   65篇
  2015年   59篇
  2014年   162篇
  2013年   140篇
  2012年   148篇
  2011年   112篇
  2010年   95篇
  2009年   65篇
  2008年   79篇
  2007年   58篇
  2006年   56篇
  2005年   35篇
  2004年   14篇
  2003年   20篇
  2002年   23篇
  2001年   16篇
  2000年   14篇
  1999年   13篇
  1998年   8篇
  1980年   1篇
排序方式: 共有1785条查询结果,搜索用时 31 毫秒
1.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
2.
《Ceramics International》2022,48(15):21663-21670
In this study, two series of GaxSb40-xS60 (x = 4, 6, 8, 10 mol%) and GaySb36S64-y (y = 3, 5, 6 mol%) glasses were prepared and the relationship between their compositional and acousto-optic (AO) properties was investigated systematically for the first time. In the GaySb36S64-y system, the AO figure of merit (M2) increased as the Ga increased, and the maximum M2 of the Ga6Sb36S58 glass was 455.78 × 10?18 s3/g, which is ~301 times greater than that of fused silica and ~2.5 times greater than that of As2S3 chalcogenide (ChG) glass at 1550 nm. However, its thermo-optic coefficients (dn/dT) varied greatly (32.1 × 10?6 °C?1–57.2 × 10?6 °C?1), and acoustic attenuations (α) at 10 MHz were high, from 5.446 dB/cm to 7.274 dB/cm. In the GaxSb40-xS60 glass system, the M2 value and α at different ultrasonic frequencies gradually decreased with the improvement of Ga. Compared with the GaySb36S64-y system, the GaxSb40-xS60 glass system had lower α (at 10 MHz) and dn/dT, which are 5.001 dB/cm–5.563 dB/cm and 17.3 × 10?6 °C?1–55.6 × 10?6 °C?1, respectively. These results provide a significant reference for the further development of novel ChG glasses and help expand their application fields.  相似文献   
3.
Recent generative adversarial networks (GANs) have yielded remarkable performance in face image synthesis. GAN inversion embeds an image into the latent space of a pretrained generator, enabling it to be used for real face manipulation. However, current inversion approaches for real faces suffer the dilemma of initialization collapse and identity loss. In this paper, we propose a hierarchical GAN inversion for real faces with identity preservation based on mutual information maximization. We first use a facial domain guaranteed initialization to avoid the initialization collapse. Furthermore, we prove that maximizing the mutual information between inverted faces and their identities is equivalent to minimizing the distance between identity features from inverted and original faces. Optimization for real face inversion with identity preservation is implemented on this mutual information-maximizing constraint. Extensive experimental results show that our approach outperforms state-of-the-art solutions for inverting and editing real faces, particularly in terms of face identity preservation.  相似文献   
4.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
5.
This paper presents a unicycle robot which utilizes the precession effect of a double-gyroscope for lateral balancing and designs an adaptive fuzzy controller to realize the balance control according to its dynamic model. The double gyroscope structure of the unicycle robot can eliminate the pitch angle interference caused by the precession effect and improve the robot's lateral anti-interference ability. An adaptive fuzzy controller is designed based on the dynamic equations of the unicycle robot to improve its robustness. The adaptive controller part improves the anti-interference ability of the unicycle robot, and the fuzzy controller part is used as decoupling controller to reduce the interference of coupling. Simulation and experimental results to verify the anti-interference ability and decoupling effect of the designed controller.  相似文献   
6.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
7.
In order to investigate the relationship between profile of myofibrillar proteins and tenderness among 2 kinds of Chinese hams (Jinhua and Xuanwei) and 3 kinds of European hams (Iberian, Serrano and Parma), shear force, myofibril fragmentation index (MFI), SDS-PAGE, carbonyls content and Raman spectroscopy were investigated. The shear force and salt content of Chinese hams were significantly higher than that of European hams, while moisture content was lower than that of European hams (p < 0.05). MFI values and SDS-PAGE profile revealed that the degradation of myofibrillar proteins in Chinese hams was lower than in European hams. In addition, Chinese hams showed significantly higher carbonyls content and β-sheet content compared with European hams, indicated that proteins aggregation intensively inhibited the degradation of myofibrillar proteins in Chinese hams. These results indicated that the higher shear force in Chinese style hams could be attributed to the lower moisture content and limited proteolysis.  相似文献   
8.
Electrochemical hydrogen evolution reaction (HER) via the splitting of water has required electrocatalysts with cost-effectiveness, environmentally friendliness, high catalytic activity, and superior stability to meet the hydrogen economy in future. In this context, we report the successful synthesis of self-standing mesoporous Ni2P–MoP2 nanorod arrays on nickel foam (Ni2P–MoP2 NRs/3D-NF) through an effective phosphidization of the corresponding NiMoO4 NRs/3D-NF. The as-synthesis Ni2P–MoP2 NRs/3D-NF, as an efficient HER electrocatalyst, exhibits small overpotential of 82.2 and 124.7 mV to reach current density of 10 and 50 mA cm−2, a low Tafel slope of 52.9 mV dec−1 and it retains its catalytic performance for at least 20 h in alkaline condition. Our work also offers a new strategy in designing and using transition metal phosphide-based 3D nanoarrays catalysts with enhanced catalytic efficiency for mass production of hydrogen fuels.  相似文献   
9.
《Ceramics International》2020,46(3):2670-2676
In this study, the effect of Fe content on the abrasion behavior of TiC–Fe nanocomposite coatings applied on the CK45 steel substrate by air plasma spray method was investigated. For this purpose, milled TiC powder was prepared at 1, 2, 3 and 4 h milled TiC powder for 4 h was selected as the suitable sample. In the next step, a suitable sample mixture with different iron powder concentrations of 5, 10, 15, 20 and 25% was prepared by mechanical milling. The granulated mixture was applied to the substrate using air plasma spray technique. Microstructural and phase analyzes were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the results of Williamson-Hall calculations, the TiC crystallites' size decreased by 49 nm–29 nm, and network strain reached 0.16% by increasing milling time from 1 h to 4 h. Studies have shown that the coatings contain titanium carbide, iron oxide, and titanium oxide, with the number of phases formed depending on the amount of iron in the chemical composition. Investigation of the tribological properties of the coating layer showed that with increased iron content in the coating, the wear resistance of the samples is reduced. Hardness tests on coatings indicate that adding iron to nanocomposite from 5 to 25% reduces hardness from 1025 to 699 Hv. It can be argued that a slight increase in the adhesion strength of the coating to the substrate is due to increased wettability because of the formation of molten iron in the coating.  相似文献   
10.
Bimetallic phosphides have been widely investigated as electrocatalysts for oxygen evolution reaction (OER) due to their efficient activity and environmental friendliness. While the reasonable design and controllable synthesis of bimetallic phosphide with typical nanostructure is still a great challenge. Hence, we put forward a novel and straightforward way for constructing FeP nanoparticles coated Ni2P ultrathin nanotube arrays on the surface of Ni foil (FeP@Ni2P/NF), which is synthesized through two steps of electrodeposition and subsequent in-situ phosphorization process. The obtained FeP@Ni2P/NF shows excellent electrochemical activity for OER, and it only needs potential of 1.52 V vs. RHE to reach the current density of 50 mA cm−2 in an alkaline media. The excellent electrocatalytic activity of FeP@Ni2P/NF mainly benefits from: (i) the synergistic effect between FeP and Ni2P promoting electron transfer; (ii) the formation of the unique 3D ultrathin nanotube arrays increasing the quantity of active sites and avoiding the agglomeration of catalysts during testing. In addition, the influence of reaction condition on the electrochemical activity for OER has also been investigated through altering the phosphorization temperature of precursor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号